Начертательная геометрия и машиностроительное черчение

Пересечение конической поверхности вращения плоскостью

В зависимости от направления секущей плоскости в сечении конической поверхности вращения могут получиться различные линии. Они называются коническими сечениями. На рис. 12.4 приведена фронтальная проекция конической поверхности вращения (ось i параллельна П2) и фронтально проецирующие плоскости …, На рис. 12.5 показаны наглядные изображения результатов пересечения плоскостями тел, ограниченных конической поверхностью вращения.

В результате пересечения конуса плоскостью, перпендикулярной оси конуса, получается окружность (рис. 12. 4а).

Эллипс получается в том случае, если секущая плоскость пересекает все образующие поверхности и не перпендикулярна оси i (рис. 12. 4б).

Плоскость параллельна одной образующей поверхности и пересекает одну половину конической поверхности. Сечением является парабола (рис. 12. 4в).

Плоскость параллельна двум образующим и пересекает обе половины конической поверхности (сечение – гипербола) (рис. 12. 4г).

Плоскость проходит через вершину конической поверхности (сечение – две пересекающиеся прямые) (рис. 12. 4д).

а) б) в) г) д)

 Рис. 12.5

Пересечение линии и поверхности.

Линия и поверхность пересекаются в общем случае в нескольких точках А, В, … . Алгоритм их определения может быть построен на тех же рассуждениях, что и при построении точки пересечения прямой и плоскости. Действительно, точки A, B, … пересечения линии m и поверхности Q принадлежат также линиям, проходящим через эти точки и лежащим на заданной поверхности. Кривую n можно рассматривать как проекцию линии m на поверхность Q. Тогда, в случае параллельного проецирования, линии n и m будут располагаться на одной цилиндрической поверхности, у которой направляющей является кривая m, а образующие параллельны направлению проецирования. В случае если линия прямая, то n и m находятся в одной плоскости S (рис. 12.6). Если направление проецирования будет перпендикулярно какой-либо плоскости проекций, линии n и m будут конкурирующими относительно соответствующей плоскости проекций.

Пример 1. Даны прямая m и тор. Построить точки пересечения прямой и поверхности. (рис. 12.7)

Решение.

1. Выбираем на заданной поверхности линию n, например, фронтально конкурирующую с заданной прямой m. Линии n и m пересекаются, т.к. они находятся в одной фронтально проецирующей плоскости.

2. Определяем горизонтальную проекцию линии n (n1), исходя из условия принадлежности ее поверхности.

3. Находим точки A и B пересечения линий n и m, которые и являются искомыми.

4. Устанавливаем види-мость проекций прямой. Так, участок  AB прямой m , расположен внутри поверхности, то он невидим на P1 и P2. Кроме этого, на P2 невидим отрезок прямой m правее точки B2 до точки на очерке поверхности, а на P1 – левее точки 51, также до точки на очерке поверхности. Эти отрезки закрыты поверхностью – находятся за контурами поверхности.

Пример 2. Даны кривая n и цилиндроид G(a, b, S) (рис. 12.8). Построить точки пере-сечения линии и поверхности.

Решение.

1. На поверхности цилиндроида вводим кривую m, фронтально конкурирующую с линией n. Эти кривые пересекаются (в общем случае), т.к. расположены на одной фронтально проецирующей цилиндрической поверхности, у которой линия n – направляющая, а образующие перпендикулярны P2.

 2. Строим горизонтальную проекцию кривой m(m1) (mÌG).

3. Находим горизонтальную проекцию точки A(A1) - A1 = n1 Ç m1, а затем и A2(A2 Ì n2).

Пример 3. Даны прямая n и коническая поверхность (рис. 12.9). Построить точки пересечения линии и поверхности.

Решение. Поставленную задачу также можно решить, задав на конической поверхности линию m, конкурирующую с прямой n относительно плоскости проекций P1 или P2. Полученные кривые будут лекальные, что требует значительных построений и снижает точность решения задачи. Так как заданная поверхность линейчатая, то в качестве линии m на поверхности целесообразно взять прямую (или прямые). Тогда алгоритм решения задачи будет следующим:

1. Спроецируем из точки S прямую n на плоскость P1, т.е. определим центральную проекцию прямой n на плоскость P1. Для этого проводим два проецирующих луча через точки 1 и 5 прямой до пересечения с плоскостью проекций P1. Точки 1 и 2 задают центральную проекцию прямой n на P1.

2. Строим образующие m1 и m2 на конической поверхности, конкурирующие с n относительно П1 при ее центральном проецировании.

3. Находим точки A и B пересечения прямой n с образующими m1 и m2. Точки A и B - искомые.

4. Устанавливаем видимость проекций прямой n.

Рекомендуемая последовательность проектировочного расчета