Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Пересечение конической поверхности вращения плоскостью

В зависимости от направления секущей плоскости в сечении конической поверхности вращения могут получиться различные линии. Они называются коническими сечениями. На рис. 12.4 приведена фронтальная проекция конической поверхности вращения (ось i параллельна П2) и фронтально проецирующие плоскости …, На рис. 12.5 показаны наглядные изображения результатов пересечения плоскостями тел, ограниченных конической поверхностью вращения.

В результате пересечения конуса плоскостью, перпендикулярной оси конуса, получается окружность (рис. 12. 4а).

Эллипс получается в том случае, если секущая плоскость пересекает все образующие поверхности и не перпендикулярна оси i (рис. 12. 4б).

Плоскость параллельна одной образующей поверхности и пересекает одну половину конической поверхности. Сечением является парабола (рис. 12. 4в).

Плоскость параллельна двум образующим и пересекает обе половины конической поверхности (сечение – гипербола) (рис. 12. 4г).

Плоскость проходит через вершину конической поверхности (сечение – две пересекающиеся прямые) (рис. 12. 4д).

а) б) в) г) д)

 Рис. 12.5

Пересечение линии и поверхности.

Линия и поверхность пересекаются в общем случае в нескольких точках А, В, … . Алгоритм их определения может быть построен на тех же рассуждениях, что и при построении точки пересечения прямой и плоскости. Действительно, точки A, B, … пересечения линии m и поверхности Q принадлежат также линиям, проходящим через эти точки и лежащим на заданной поверхности. Кривую n можно рассматривать как проекцию линии m на поверхность Q. Тогда, в случае параллельного проецирования, линии n и m будут располагаться на одной цилиндрической поверхности, у которой направляющей является кривая m, а образующие параллельны направлению проецирования. В случае если линия прямая, то n и m находятся в одной плоскости S (рис. 12.6). Если направление проецирования будет перпендикулярно какой-либо плоскости проекций, линии n и m будут конкурирующими относительно соответствующей плоскости проекций.

Пример 1. Даны прямая m и тор. Построить точки пересечения прямой и поверхности. (рис. 12.7)

Решение.

1. Выбираем на заданной поверхности линию n, например, фронтально конкурирующую с заданной прямой m. Линии n и m пересекаются, т.к. они находятся в одной фронтально проецирующей плоскости.

2. Определяем горизонтальную проекцию линии n (n1), исходя из условия принадлежности ее поверхности.

3. Находим точки A и B пересечения линий n и m, которые и являются искомыми.

4. Устанавливаем види-мость проекций прямой. Так, участок  AB прямой m , расположен внутри поверхности, то он невидим на P1 и P2. Кроме этого, на P2 невидим отрезок прямой m правее точки B2 до точки на очерке поверхности, а на P1 – левее точки 51, также до точки на очерке поверхности. Эти отрезки закрыты поверхностью – находятся за контурами поверхности.

Пример 2. Даны кривая n и цилиндроид G(a, b, S) (рис. 12.8). Построить точки пере-сечения линии и поверхности.

Решение.

1. На поверхности цилиндроида вводим кривую m, фронтально конкурирующую с линией n. Эти кривые пересекаются (в общем случае), т.к. расположены на одной фронтально проецирующей цилиндрической поверхности, у которой линия n – направляющая, а образующие перпендикулярны P2.

 2. Строим горизонтальную проекцию кривой m(m1) (mÌG).

3. Находим горизонтальную проекцию точки A(A1) - A1 = n1 Ç m1, а затем и A2(A2 Ì n2).

Пример 3. Даны прямая n и коническая поверхность (рис. 12.9). Построить точки пересечения линии и поверхности.

Решение. Поставленную задачу также можно решить, задав на конической поверхности линию m, конкурирующую с прямой n относительно плоскости проекций P1 или P2. Полученные кривые будут лекальные, что требует значительных построений и снижает точность решения задачи. Так как заданная поверхность линейчатая, то в качестве линии m на поверхности целесообразно взять прямую (или прямые). Тогда алгоритм решения задачи будет следующим:

1. Спроецируем из точки S прямую n на плоскость P1, т.е. определим центральную проекцию прямой n на плоскость P1. Для этого проводим два проецирующих луча через точки 1 и 5 прямой до пересечения с плоскостью проекций P1. Точки 1 и 2 задают центральную проекцию прямой n на P1.

2. Строим образующие m1 и m2 на конической поверхности, конкурирующие с n относительно П1 при ее центральном проецировании.

3. Находим точки A и B пересечения прямой n с образующими m1 и m2. Точки A и B - искомые.

4. Устанавливаем видимость проекций прямой n.

Рекомендуемая последовательность проектировочного расчета