Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Принадлежность точки и линии поверхности вращения

При решении задач на принадлежность точки поверхности вращения в качестве графически простых линий наиболее часто используются окружности.

Известно, что точка принадлежит поверхности, если она принадлежит какой-нибудь линии поверхности. Для цилиндрической поверхности вращения наиболее простыми линиями являются прямые (образующие) и окружности. Следовательно, если требуется найти горизонтальную проекцию точки A(А1) (по известной фронтальной проекции А2), принадлежащую цилиндрической поверхности, то нужно через точки провести одну из этих линий. На рис. 11.10 через А2 проведена прямолинейная образующая n(n2). Так как прямая n занимает горизонтально проецирующее положение, то на П1 она проецируется в точку n1 (полагаем, что проекция образующей на П2 видимая). Тогда в эту же точку проецируется и точка А(А1). С другой стороны, все окружности цилиндрической поверхности проецируются на П1 в одну окружность, так как ось поверхности перпендикулярна П1. Следовательно, искомая проекция точки А(А1) будет находиться на этой окружности.

Через точку на конической поверхности вращения также можно провести прямую и окружность. На рис. 11.11 через А2 проведены проекции образующей n(n2) и окружности 1222. Отрезок 1222 равен диаметру окружности. После построения горизонтальных проекций этих линий, определяем по линии проекционной связи горизонтальную проекцию точки А(А1). Полагаем, что на П2 проекция точки А(А2) – видимая (находится перед контуром поверхности относительно П2). Если дана горизонтальная проекция А1, а требуется найти А2, то построения выполняются в обратной последовательности.

Построения горизонтальных проекций точек по их фронтальным проекциям, при условии, что точки принадлежат соответствующим поверхностям, показаны на рис. 11.13, рис. 11.14, а также рис. 11.16 – рис.11.18. В качестве линий поверхностей используются окружности (траектории точек образующих).

Линия принадлежит поверхности, если все ее точки принадлежат поверхности.

Если известна одна проекция линии, принадлежащей поверхности, и требуется построить вторую ее проекцию, то следует на известной проекции выбрать несколько точек, построить недостающие проекции и полученные проекции соединить линией. Выбор количества точек зависит как от размеров изображения, так и от сложности кривой. В большинстве случаев, чем больше точек выбирается на исходной проекции, тем выше точность построений второй проекции.

На рис. 11.20 показан отсек конической поверхности вращения и линия n на этой поверхности. Если известна n1, то для построения n2 можно использовать как прямолинейные образующие поверхности, так и окружности. На рис. 11.20 фронтальная проекция линии n (n2) построена с помощью окружностей. Профильная проекция линии n(n3) построена по точкам линий n1 и n2. Буквами обозначены характерные точки линии (крайние точки, а также принадлежащие очерковым образующим поверхности), а цифрами – промежуточные.

Для установления видимости проекций линии используем контуры t, m и k поверхности. Так, при проецировании на П1 линия n видима, так как расположена выше горизонтального контура t(t1, t2). Это видно на фронтальной проекции. При проецировании на П2 видимым будет участок E4CAB (E242C2A2B2), так как он расположен перед фронтальным контуром m. Это следует из горизонтальной проекции. Тогда оставшийся участок n2 будет невидимым. Видимость профильной проекции линии n устанавливается при взгляде наблюдателя на плоскость П3. Участок E4C(E343C3), расположенный за профильным контуром k, будет невидимым, а оставшийся – видимым. Это можно установить по горизонтальной или фронтальной проекциям.

Рекомендуемая последовательность проектировочного расчета