Начертательная геометрия и машиностроительное черчение

МНОГОГРАННЫЕ И КРИВЫЕ ПОВЕРХНОСТИ
Построение проекций пирамиды и ее развертка
Построение проекции прямого круглого цилиндра и его развертка
Построение разверток поверхностей
Построение полной развертки поверхностей треугольной призмы
Построение развертки призмы правильной формы
Комплексный чертеж
Комплексный чертеж прямой
Комплексный чертеж плоскости
Взаимное положение точек и прямых, их принадлежность плоскости
Принадлежность точки и прямой плоскости
Преобразование комплексного чертежа
Проецирование прямой общего положения
Первая и вторая позиционные задачи
Прямая занимает проецирующее положение
Взаимное положение плоскостей
Метрические задачи. Ортогональная проекция прямого угла
Построение взаимно перпендикулярных фигур
Линии наибольшего наклона
Перпендикулярность двух плоскостей
Определение расстояний
Определение расстояния между параллельными фигурами
Определение углов между фигурами
Угол между прямой и плоскостью
Угол между плоскостями
Кривая линия
Понятие поверхности
Точка и линия на поверхности
Коническая и цилиндрическая поверхности
Поверхностью вращения
Принадлежность точки и линии поверхности вращения
Циклическая поверхность
Пересечение поверхности и плоскости
Пересечение конической поверхности вращения плоскостью
Пересечение поверхностей
Способ концентрических сфер
Способ эксцентрических сфер
Пересечение поверхностей второго порядка
Развертки гранных поверхностей
Приближенные развертки развертывающихся поверхностей
Условные развертки
неразвертывающихся поверхностей
Аксонометрические проекции
Ортогональная (прямоугольная) диметрическая проекция
Разъемные соединения
Шпилечные соединения
Соединения деталей машин
Классификация резьбовых соединений
Метрическая резьба
Построение винтовой поверхности на чертеже
Специальные резьбы
Шпилька
Соединение болтом упрощенное
Инструмент для завинчивания и отвинчивания
Условие самоторможения в резьбе
Расчет затянутого и дополнительно нагруженного внешней осевой силой болта
Расчет групповых болтов
Расчет резьбы на прочность
Шпоночные соединения
последовательность проектировочного расчета
Расчет на прочность соединений с сегментными шпонками
Рекомендации по конструированию шлицевых соединений

Перпендикулярность двух плоскостей

 Определение. Две плоскости называются перпендикулярными, если угол между ними равен 90°. Приведем без доказательства теоремы стереометрии, полезные для решения последующих метрических задач.

1. Признак перпендикулярности двух плоскостей: если плоскость проходит через

 перпендикуляр к другой плоскости, то она перпендикулярна этой плоскости.

2. Если две плоскости, перпендикулярные третьей плоскости, пересекаются, то

 прямая их пересечения перпендикулярна третьей плоскости.

3. Для наклонной, т. е. не являющейся перпендикуляром к плоскости, имеет место

  утверждение: через наклонную проходит единственная плоскость,

 перпендикулярная данной плоскости.

 Последнее утверждение позволяет предложить следующий алгоритм построения плоскости, проходящей через наклонную АВ и перпендикулярную заданной плоскости Σ:

1) на АВ выбирается произвольная точка Е;

2) строится прямая t таким образом, что t ' Е, t ^ h , t ^ f , где h Ì Σ, f Ì Σ (рис. 7.10),

 т.е. t ^ Σ.

Плоскость (АВ, t ) будет единственной плоскостью, перпендикулярной плоскости Σ. Заметим, что через прямую t ^ Σ проходит не одна плоскость, перпендикулярная Σ.

Задача. Даны плоскость Σ(CD, MN), где CD // MN и прямая АВ (рис. 7.11). Построить на КЧ плоскость, проходящую через АВ и перпендикулярную плоскости Σ.

Алгоритм проекционного решения задачи:

1) строятся линии уровня h(h1,h2) и f(f1,f2) в плоскости Σ,

 при этом h2 // х, f1 // х;

2) строятся проекции t1 и t2 прямой t таким образом, что

  t2 ' E2 , t2 ^ f2 ; t1 ' E1, t1 ^ h1 , где Е ÎАВ – произвольная

 точка. Плоскость (АВ, t) – решение задачи.

Задача. Даны плоскости Σ(АВ, DC) и Δ(KL, PT), где

AB Ç DC, KL // PT, а также точка Е. Построить плоскость, проходящую через точку Е и перпендикулярную обеим плоскостям Σ и Δ (рис. 9.9).

Одно из возможных решений данной задачи состоит в следующем. Вначале строится линия пересечения заданных плоскостей t = Σ Ç Δ. Затем, на основании приведенных теорем стереометрии, строится плоскость, проходящая через точку Е и перпендикулярная линии t. Будучи единственной, эта плоскость представляет собой решение задачи. Возможен другой алгоритм решения данной задачи (см. рис. 9.8):

1) из точки Е опускается перпендикуляр а

 на плоскость Σ;

2) из точки Е опускается перпендикуляр b

 на плоскость Δ.

Плоскость (a, b), где a Ç b = E, есть решение задачи. Рассмотрим реализацию этого алгоритма на КЧ (см. рис. 9.9).

1. В плоскости Σ построим линии уровня 

 h1(h11,h12) и f 1(f11, f12) . При этом 

 h12 // x; f11 // x.

2. В плоскости Δ построим линии уровня

 h2(h21,h22) и f 2(f21,f22) . При этом 

  h22 // х; f21 //х.

3. Из точки Е опускаются два перпендикуляра: а ^ Σ, b ^ Δ. При этом а2 ^ f12 ,

 а1 ^h11 ; b2 ^ f22 , b1 ^ h21 .

Две прямые а и b, пересекающиеся в точке Е, определяют искомую плоскость, т.е. плоскость, перпендикулярную заданным плоскостям Σ и Δ.

Рекомендуемая последовательность проектировочного расчета