Математический анализ Элементы комбинаторики

История искусства
Абстрактное искусство
Агитационно-массовое искусство
Чикагская архитектурная школа
Петер Беренс
Поп-культура и поп-дизайн 60-х.
История дизайна
Баухауз
Здание Баухауз в Дессау
Традиции Баухауз в дизайне Восточной Германии
Идеи дизайна в эпоху промышленных революций
Футуристическая  мода 60-х
Радикальный дизайн. Антидизайн
Эргономичный дизайн
Послевоенный дизайн в Европе и России
Промышленные выставки
Графика
Начертательная геометрия
Задачи начертательной геометрии
Туризм
Курс теоретической механики
Электротехника
Теория электрических цепей
Лабораторные работы по электротехнике
Электрические машины
Проводниковые материалы
Основы теории электромагнитного поля
Энергия электромагнитного поля
Физика
Примеры решения задач
Лабораторные работы по оптоэлектронике
Электроника полупроводников
Информатика
Концепция организации сетей
Беспроводные сети
Глобальные сети
Математика
Дифференцирование исчисление
Интегральное исчисление
Элементы комбинаторики
Непрерывность функции
Комплексные числа
Дискретная математика
Кривые второго порядка
Линейная алгебра
Элементы векторной алгебры
Введение в математический анализ
Производная функции
Теоремы о производных
Первообразная и неопределённый интеграл.
Определённый интеграл
Предел и непрерывность функции нескольких переменных.
Знакопеременные ряды
Правила вычисления неопределенных интегралов
Признаки сравнения несобственных интегралов
Задача
Разложение  в ряд Фурье функции
Вычисление криволинейного интеграла
 

Элементы комбинаторики

Бином Ньютона. (полиномиальная формула)

 Бином Ньютона – это формула, выражающая выражение ( a + b)n  в виде многочлена. Эта формула имеет вид:

Пример

Элементы математической логики

 Математическая логика – разновидность формальной логики, т.е. науки, которая изучает умозаключения с точки зрения их формального строения.

Конъюнкция Дизъюнкция

Импликация Эквиваленция

Пример Вычислить двойной интеграл , в котором область интегрирования R ограничена прямыми линиями .

Примеры

Булевы функции

 Определение. Булевой функцией  f(X1, X2, …, Xn) называется называется произвольная n – местная функция, аргументы и значения которой принадлежат множеству {0, 1}.

Исчисление предикатов

Конечные графы и сети. Основные определения

 Определение. Если на плоскости задать конечное множество V точек и конечный набор линий Х, соединяющих некоторые пары из точек V, то полученная совокупность точек и линий будет называться графом.

 При этом элементы множества V называются вершинами графа, а элементы множества Х – ребрами.

 В множестве V могут встречаться одинаковые элементы, ребра, соединяющие одинаковые элементы называются петлями. Одинаковые пары в множестве Х называются кратными (или параллельными) ребрами. Количество одинаковых пар

(v, w) в Х называется кратностью ребра (v, w).

 Множество V и набор Х определяют граф с кратными ребрами – псевдограф.

Матрицы графов

Примеры

Достижимость и связность.

Деревья и циклы

Элементы топологии

Открытые и замкнутые множества

Непрерывные отображения

Топологические произведения

 

Математика примеры решения задач