Концепция организации сетей

Протяженность, качество и способ прокладки линий связи.

Итак, класс локальных вычислительных сетей по определению отличается от класса глобальных сетей небольшим расстоянием между узлами сети. Это в принципе делает возможным использование в локальных сетях качественных линий связи: коаксиального кабеля, витой пары, оптоволоконного кабеля. В то же время они не могут быть использованы на больших расстояниях, свойственных глобальным сетям, изза экономических ограничений. В глобальных сетях в основном используются уже существующие линий связи (телеграфные или телефонные), а в локальных сетях они прокладываются заново.

Сложность методов передачи и оборудования.

В условиях низкой надежности физических каналов в глобальных сетях требуется использовать более сложные методы передачи данных, чем в локальных сетях. Так, в глобальных сетях широко применяются модуляция, асинхронные методы обмена с использованием скользящего окна, сложные методы контрольного суммирования, квитирование и повторные передачи. С другой стороны, качественные линии связи в локальных сетях позволили упростить используемые здесь процедуры передачи данных за счет применения немодулированных сигналов, синхронных методов передачи, простейших методов контроля данных по четности и отказа от обязательного подтверждения получения пакета, во всяком случае на нижних уровнях стека протоколов.

Так как в локальных сетях использовались простые методы передачи данных, то более простым по сравнению с глобальными сетями оказалось и используемое здесь оборудование передачи данных, к которому до недавнего времени можно было отнести только сетевые адаптеры и пассивные концентраторы. В качестве узлов локальной сети в основном выступают персональные компьютеры, серверы и суперсерверы. В глобальных сетях широко используется более сложное и разнообразное оборудование передачи данных модемы, мультиплексоры, коммутаторы, усилители, преобразователи сигналов, а в качестве узлов глобальной сети чаще используются большие машины класса мейнфреймов.

Скорость обмена данными.

Одним из главных отличий локальных сетей от глобальных является наличие высокоскоростных каналов обмена данными между компьютерами, скорость которых (10, 16 и 100 Мб/с) сравнима со скоростями работы периферийных устройств компьютера дисков, мониторов и т.п. За счет этого у пользователя локальной сети, подключенного к удаленному разделяемому ресурсу (например, диску сервера), складывается впечатление, что он пользуется этим диском, как "своим". Для глобальных сетей типичны гораздо более низкие скорости передачи данных 2400, 9600, 14400 и 28800 б/с, в последнее время 56 и 64 Кб/с.

Топологии.

В то время как для локальных сетей характерно использование типовых топологий, таких как общая шина, звезда, кольцо, в глобальных сетях чаще используются топологии типа иерархическая звезда или произвольные смешанные топологии, причем географическое размещение пунктов, в которых сосредоточены компьютеры или коммутаторы, оказывает на топологию связей основное влияние.

Разделение каналов.

В локальных сетях каналы связи используются, как правило, совместно сразу несколькими узлами сети, а в глобальных сетях пары соседних коммутаторов индивидуально используют отрезок кабеля, их соединяющего. Наличие общей среды передачи данных (во всяком случае в их базовых топологиях, таких как общая шина или кольцо) избавляет локальные сети от необходимости управления потоком данных для устранения перегрузок сети и потерь пакетов. В глобальных сетях такие процедуры необходимы, так как индивидуальные каналы всегда находятся в распоряжении конечных узлов или коммутаторов, и переполнение сети может наступить в случае слишком интенсивной генерации данных одновременно большим количеством узлов.

Уровень реализуемых функций модели ISO

В локальных сетях с типовой топологией оказывается достаточным использование только простых транспортных процедур (первых двух уровней семиуровневой модели), так как нет необходимости в маршрутизации. В глобальных сетях обязательно наличие еще, как минимум, функций сетевого уровня. Однако различие между глобальными и локальными сетями в модели OSI проявляется только на нижних уровнях. Во многих случаях протоколы на верхних уровнях одинаковы для обоих типов сетей.

Оперативность выполнения запросов.

Низкая скорость передачи данных в глобальных сетях затрудняет реализацию сервисов в режиме online (оперативный доступ), которые являются обычными для локальных сетей.

Масштабируемость.

"Классические" локальные сети обладают плохой масштабируемостью изза жесткости базовой топологии, которая определяет способ подключения станций, например, общую шину и длину линии. При такой топологии характеристики сети резко ухудшаются при достижении определенного предела по количеству узлов. Глобальным же сетям присуща хорошая масштабируемость изза допустимости произвольной топологии и алгоритмов управления потоками данных.

Набор сервисов.

Локальные сети предоставляют, как правило, широкий набор услуг: различные виды файлового сервиса, принтсервис, факссервис, сервис баз данных, электронная почта и другие, в то время как глобальные сети в основном предоставляют почтовые услуги, а иногда и ограничиваются только одним транспортным сервисом передачей произвольных пакетов данных от узла отправителя к узлу получателя.

Активность транспортной сети.

В глобальных сетях транспортная сети, функцией которой является доставка пакета одного абонента другому, строится с использованием активных элементов узлов коммутации, построенных на базе компьютеров, специально выделенных для этих целей. Именно коммутационные компьютеры управляют приемом и передачей данных, в частности, выполняют маршрутизацию. В локальных сетях транспортная подсистема пассивна и представляет собой просто физическую среду передачи электрических сигналов, а все функции по передаче пакетов выполняют обычные станции сети.

Отношение собственности.

Обычно локальные сети устанавливаются и эксплуатируются одной организацией, следовательно, они относятся к частным сетям передачи данных, а глобальные сети бывают и частными, когда они создаются одной большой частной фирмой (например, сеть компании Digital Equipment), и общественными (например, большая часть российских территориальных сетей).

Видеосистема. Видеосистема компьютера состоит из трех компонент:

монитор (называемый также дисплеем); видеоадаптер; программное обеспечение (драйверы видеосистемы).

Видеоадаптер посылает в монитор сигналы управления яркостью лучей и синхросигналы строчной и кадровой развёрток. Монитор преобразует эти сигналы в зрительные образы. А программные средства обрабатывают видеоизображения – выполняют кодирование и декодирование сигналов, координатные преобразования, сжатие изображений и др. Монитор — устройство визуального отображения информации (в виде текста. таблиц, рисунков, чертежей и др.). Подавляющее большинство мониторов сконструированы на базе электронно-лучевой трубки (ЭЛТ), и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами. Основной элемент дисплея – электронно-лучевая трубка. Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором - специальным веществом, способным излучать свет при попадании на него быстрых электронов. Люминофор наносится в виде наборов точек трёх основных цветов – красного, зеленого и синего. Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксель – точку, из которых формируется изображение (англ. pixel—picture element, элемент картинки). Расстояние между центрами пикселей называется точечным шагом монитора. Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость Обычно в цветных мониторах шаг составляет 0,24 мм. При таком шаге глаз человека воспринимает точки триады как одну точку "сложного" цвета. На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки "нацелены" на один и тот же пиксель, но каждая из них излучает поток электронов в сторону "своей" точки люминофора. Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны. Перед экраном на пути электронов ставится маска — тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета. Величиной электронного тока пушек и, следовательно, яркостью свечения пикселей, управляет сигнал, поступающий с видеоадаптера. На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пиксели строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д. Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки. Последняя не должна быть ниже 60 Гц, иначе изображение будет мерцать.


Глобальные сети