Квантовая физика примеры решения задач Теория электрических цепей Основы теории электромагнитного поля

Элементы квантовой механики и физики атомов, молекул, твердых тел

Атом во внешнем магнитном поле. Эффект Зеемана

Расщепление в магнитном поле энергетических уравнений атомов, приводящее к расщеплению спектральных линий в спектрах, называют эффектом Зеемана. Различают эффект Зеемана: нормальный (простой), когда каждая линия расщепляется на три компонента, и аномальный (сложный), когда каждая линия расщепляется на большее, чем три, число компонентов.

Эффект Зеемана характерен для атомов парамагнетиков, так как только эти атомы обладают отличным от нуля магнитным моментом и могут взаимодействовать с внешним магнитным полем.

Атом, обладающий магнитным моментом, приобретает в магнитном поле дополнительную энергию

∆E = -μJBB,

(13.54)

где μJB — проекция полного магнитного момента атома на направление поля В. Имея в виду формулу (13.53), запишем выражение для энергии каждого подуровня:

E = E0 + ∆E = E0 + μБgBmJ , mJ = J, J-1, …, -J,

(13.55)

где Е0 — энергия уровня в отсутствие магнитного поля. Электромагнетизм До начала 19-го века единственным источником магнитного поля, известным Человечеству, были постоянные магниты. Они применялись в виде магнитных стрелок компаса (древний Китай), священниками («плавающий гроб» Магомета в Мекке), были попытки применения магнитов для лечения болезней (растирали руду в порошок и беспощадно заставляли пить суспензию). Ни о какой физической ясности о природе явления, конечно, не было.

Отсюда следует, что уровни с квантовым числом J расщепляются в магнитном поле на 2J + 1 равноотстоящих друг от друга подуровней, причем величина расщепления зависит от множителя Ланде g, т. е. интервалы δЕ между соседними подуровнями пропорциональны g: δЕ ≈ g. Таким образом, магнитное поле в результате расщепления уровней снимает вырождение по mJ.

Кроме этого, необходимо учесть, что возможны только такие переходы между подуровнями, принадлежащими разным уровням, при которых выполняются следующие правила отбора для квантового числа тJ:

∆mJ = 0, ±1.

(13.56)

Если в (13.55) B = 0, то энергетический уровень определяется только первым членом, если В ≠ 0, то необходимо учитывать возможные значения mJ , а оно может принимать 2J + 1 значений. Это означает расщепление первоначального энергетического уровня на 2J+ 1 подуровней.

Теперь можно понять происхождение мультиплетов Зеемана. На рис. 13.11 рассмотрены возможные переходы в атоме водорода между состояниями р (l = 1)иs(l=0) для двух случаев:

когда В = 0 (внешнее магнитное поле отсутствует);

когда В ≠ 0.

В отсутствие поля наблюдается одна линия с частотой v0. В магнитном поле p-состояние расщепляется на три подуровня (при l = 1, ml, = 0, ± 1), с каждого из которых могут происходить переходы на уровень s, и каждый переход характеризуется своей частотой: v0 - ∆v, v0, v0 + ∆v. Следовательно, в спектре появляется триплет (наблюдается нормальный эффект Зеемана).

Рис. 13.11.

Не вдаваясь в подробности, отметим, что нормальный эффект Зеемана наблюдается в том случае, если исходные линии не обладают тонкой структурой (являются синглетами). Если исходные уровни обладают тонкой структурой, то в спектре появляется большее число компонентов и наблюдается аномальный эффект Зеемана.

Лекция 14. Элементы квантовой статистики и зонной теории твердого тела

Понятие о квантовой статистике

 Свойства систем, состоящих из огромного числа частиц, подчиняющихся законам квантовой механики, изучаются в разделе статистической физики – квантовой статистике. Квантовая статистика основывается на принципе неразличимости тождественных частиц.

Пусть система состоит из N частиц. Введем в рассмотрение многомерное пространство всех координат и импульсов частиц системы. Так как состояние каждой частицы определяется тройкой координат x, у, z и тройкой соответствующих проекций импульса px, pу, pz, то состояние системы определяется заданием 6N переменных. Соответственно число «взаимно перпендикулярных» координатных осей данного пространства равно 6N. Подобное 6N-мерное пространство называется фазовым пространством.

Разобьем фазовое пространство на малые 6N-мерные элементарные ячейки объемом

dqdp  = dq1dq2…dq3Ndp1dp2…dp3N,

где q - совокупность координат всех частиц, р - совокупность проекций их импульсов.

Корпускулярно-волновой дуализм свойств частиц вещества и соотношение неопределенностей Гейзенберга приводят к выводу, что объем элементарной ячейки (он называется фазовым объемом) не может быть меньше чем h3 (h — постоянная Планка). Пусть квантово-механическая система состоит из частиц, которые имеют одинаковые физические свойства. Такие частицы называются тождественными. Необычные свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики - принципе неразличимости тождественных частиц, согласно которому невозможно экспериментально различить тождественные частицы.

Из соотношения неопределенностей вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей вычислять лишь вероятность (|ψ|2) нахождения микрочастицы в окрестностях той или иной точки пространства. В квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми.

  Принимая во внимание физический смысл величины |ψ|2, принцип неразличимости тождественных частиц можно записать в виде

|ψ(х1, х2)|2 = |ψ(х2, х1)|2,

(14.1)

где х1 и х2 - соответственно совокупность пространственных и спиновых координат первой и второй частиц. Из выражения (14.1) вытекает, что возможны два случая:

ψ(х1, х2) = ± ψ(х2, х1),

т.е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется симметричной, если меняет - антисимметричной.

В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми - Дирака; эти частицы называются фермионами. Частицы с нулевым или целочисленным спином (например, π-мезоны, фотоны) описываются симметричными волновыми функциями и подчиняются статистике Бозе - Эйнштейна; эти частицы называются бозонами.

Состояние системы невзаимодействующих частиц (идеальный газ) задается с помощью так называемых чисел заполнения ni - чисел, указывающих степень заполнения квантового состояния, характеризуемою данным набором i квантовых чисел, частицами системы, состоящей из многих тождественных частиц. Для систем частиц, образованных бозонами, числа заполнения могут принимать любые целые значения: 0, 1, 2, …, Для систем частиц, образованных фермионами, из-за принципа Паули числа заполнения могут принимать лишь два значения: 0 - для свободных состояний и 1 - для занятых. Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т.е. определить средние числа заполнения <ni>. Итак, рассматриваем задачу о нахождении наиболее вероятного распределения частиц по ячейкам фазового пространства.


Элементы квантовой механики и физики атомов, молекул, твердых тел