Физика полупроводников Теория электрических цепей Основы теории электромагнитного поля

Элементы квантовой механики и физики атомов, молекул, твердых тел

Законы сохранения

 В физике элементарных частиц не существует законченной теории, тогда как законы сохранения хорошо соблюдаются. Многие законы сохранения для элементарных частиц уже установлены из опыта, а соответствующие фундаментальные законы их поведения еще неизвестны. Поэтому законы сохранения играют здесь главенствующую роль и позволяют анализировать процессы, механизм которых еще не раскрыт.

Как можно считать сейчас установленным, каждый закон сохранения связан с какой-либо симметрией законов природы, хотя и не для всех законов эта симметрия выяснена. Так, в основе законов сохранения энергии Е, импульса р и момента импульса М лежат соответственно однородность времени, однородность и изотропия пространства.

Для элементарных частиц выполняется гораздо больше законов сохранения, чем для макроскопических процессов. Все эти законы подразделяются на точные и приближенные. Точные законы сохранения выполняются во всех фундаментальных взаимодействиях, а приближенные — только в некоторых.

Точными являются законы сохранения энергии, импульса и момента импульса. Точными являются и законы сохранения всех зарядов. Происхождение этих законов пока не установлено. Ясно только одно: каждый из этих зарядов характеризует некое внутреннее свойство частицы.

Необходимость введения зарядов (кроме электрического) была продиктована многочисленными экспериментальными фактами, объяснить которые оказалось возможным только при допущении, что существуют заряды неэлектрической природы, которые также сохраняются.

Установлено пять зарядов: электрический Q, барионный В и три лептонных: Le, Lμ и Lτ. У всех элементарных частиц эти заряды имеют только целочисленные значения (заряд Q — это число единиц элементарного заряда).

Барионный заряд принимается равным +1 для всех барионов и барионных резонансов и -1 для их античастиц. Все остальные частицы имеют барионный заряд В = 0. Для всех процессов с участием барионов и антибарионов суммарный барионный заряд будет сохраняться. Это и называют законом сохранения барионного заряда.

Заряды аддитивны. Например, барионный заряд атомного ядра равен сумме всех барионных зарядов нуклонов, из которых построено ядро. Иными словами, барионный заряд ядра равен массовому числу А. Таким образом,

B = +1 для барионов (нуклонов и гиперонов),

 B = -1 для антибарионов.

(17.7)

Лептонные заряды позволяют простейшим образом интерпретировать установленный на опыте закон, согласно которому в замкнутой системе при любых процессах остается постоянной разность между числом лептонов и антилептонов каждого вида.

То же, но немного в другой формулировке: при всех процессах взаимопревращаемости элементарных частиц лептонный заряд сохраняется, в этом заключается закон сохранения лептонного заряда. Лептонный заряд не связан ни с какими полями, а просто является средством учета количества лептонов в реакциях.

Условились считать, что лептонный заряд Lе равен +1 (для е- и νe), Lμ =+1 (для μ- и νμ), Lτ = +1 (для τ- и ντ) и -1 для всех антилептонов. Здесь νe, νμ, ντ - электронное, мюонное и таонное нейтрино. Из эксперимента следует, что это разные нейтрино. Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Таким образом,

Lе = Lμ = Lτ = +1 для лептонов (е-, νe; μ-, νμ; τ-, ντ),

 Lе = Lμ = Lτ = -1 для антилептонов (е+, ; μ+, ; τ+, ).

(17.8)

Странность S. Было обнаружено, что гипероны рождаются при столкновениях адронов высоких энергий. Значит их рождение связано с сильным взаимодействием, и время жизни гиперонов должно быть порядка 10-23 с (время, характерное для процессов, обусловленных сильным взаимодействием). На опыте же было найдено, что их время жизни в 1013 раз больше. Такое поведение гиперонов представлялось странным.

Оказалось также, что гипероны в этих процессах рождаются не поодиночке, а только парами. Например, при столкновении протонов Λ0-гиперон появляется только совместно с К+-мезоном или с Σ+-гипероном.

Гипероны и К-мезоны назвали странными частицами. После рождения эти частицы медленно и независимо друг от друга распадаются за счет слабого взаимодействия.

Для количественного описания парного рождения и медленного распада странных частиц было введено квантовое число S— странность. Поведение странных частиц можно объяснить, если считать, что частицы Λ°, Σ и К- имеют странность S = -1, частицы Ξ — S= -2 и Ω --гиперон — S = -3. У соответствующих античастиц странность одинакова по модулю, но противоположна по знаку.

Закон сохранения странности: странность в сильных и электромагнитных взаимодействиях сохраняется, а в слабых может меняться на ±1.

Чётность. Элементарным частицам приписывают еще одну квантово-механическую характеристику — четность (Р), характеризующую симметрию волновой функции элементарной частицы (или системы элементарных частиц) относительно зеркального отражения. Если при зеркальном отражении волновая функция частицы не меняет знака, то четность частицы Р = + 1 (четность положительная), если меняет знак, то четность частицы Р = - 1 (отрицательная).

В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности.

Однако Ц. Ли и Ч. Янг (1956 г.) показали, что при слабых взаимодействиях этот закон не выполняется.

Изотопический спин. Все адроны распределяются по небольшим группам, называемым изотопическими мультиплетами (изомультиплетами). Это — группы элементарных частиц, одинаковым образом участвующие в сильном взаимодействии, имеющие близкие массы, одинаковые барионные заряды, одинаковые спины и различающиеся электрическими зарядами [например, протон и нейтрон; π+, π- и π0 (см. Приложение 1). Адронам присуща изотопическая инвариантность, заключающаяся в том, что сильное взаимодействие для всех адронов, входящих в один и тот же изомультиплет, одинаково, т. е. не зависит от электрического заряда.

Эту по существу независимость от электрических зарядов называют изотопической (или зарядовой) независимостью сильных взаимодействий. Так, протон и нейтрон объединяют в изотопический дублет. Эти две частицы рассматриваются как различные квантовые состояния одной и той же частицы — нуклона. Изотопические триплеты — это, например, (π-, π0 , π+) и (Σ-, Σ0, Σ+). Существуют и одиночные частицы, не входящие в мультиплеты, их называют синглетами (η-мезон, Λ- и Ω-гипероны).

По аналогии с обычным спином каждому зарядовому мультиплету приписывают определенное значение изотопического спина (короче изоспина) I. Значение I выбирают так, чтобы 2I + 1 было равно числу частиц в мультиплете n.

n = 2 I + 1

(17.9)

Отдельным частицам мультиплета приписывают различные значения Iz — проекции изоспина на ось Z в воображаемом изотопическом пространстве. Причем частице с большим электрическим зарядом — большее значение Iz. Например, для нуклонов I = 1/2, у протона Iz = +1/2, у нейтрона Iz = -1/2; для π-мезонов I = 1, тогда для π+, π0, π- соответственно Iz равно +1, 0, -1.

 С изоспином связан закон сохранения: при сильных взаимодействиях сохраняется как изоспин I, так и его проекция. При электромагнитных — только Iz, сам же изоспин I не сохраняется. Слабые взаимодействия протекают как правило с изменением изоспина I.

Выполнение законов сохранения в сильном, электромагнитном и слабом взаимодействиях указано в таблице 17.3 знаком (+), невыполнение законов – знаком (-).

Таблица 17.3

Закон сохранения

Взаимодействие

сильное

электромагнитное

слабое

энергии

+

+

+

импульса

+

+

+

момента импульса

+

+

+

электрического заряда

+

+

+

лептонного заряда

+

+

+

барионного заряда

+

+

+

изотопического спина

+

+

-

странности

+

+

-

чётности

+

+

-


Физика атомного ядра и элементарных частиц