Курс высшей математики Примеры решений и лекции Элементы комбинаторики Непрерывность функции Комплексные числа Дискретная математика Кривые второго порядка Линейная алгебра Элементы векторной алгебры

  Определение. Правой (левой) производной функции f(x) в точке х = х0 называется правое (левое) значение предела отношения  при условии, что это отношение существует.

 

 

  Если функция f(x) имеет производную в некоторой точке х = х0, то она имеет в этой точке односторонние производные. Однако, обратное утверждение неверно. Во- первых функция может иметь разрыв в точке х0, а во- вторых, даже если функция непрерывна в точке х0, она может быть в ней не дифференцируема.

 

  Например: f(x) = ïxï- имеет в точке х = 0 и левую и правую производную, непрерывна  в этой точке, однако, не имеет в ней производной.

 

  Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке.

  Понятно, что это условие не является достаточным.

 

Агитационно-массовое искусство