Интегральное исчисление

История искусства История дизайна Начертательная геометрия Электротехника Физика Информатика Математика

История искусства
Абстрактное искусство
Агитационно-массовое искусство
Чикагская архитектурная школа
Петер Беренс
Поп-культура и поп-дизайн 60-х.
История дизайна
Баухауз
Здание Баухауз в Дессау
Традиции Баухауз в дизайне Восточной Германии
Идеи дизайна в эпоху промышленных революций
Футуристическая  мода 60-х
Радикальный дизайн. Антидизайн
Эргономичный дизайн
Послевоенный дизайн в Европе и России
Промышленные выставки
Графика
Начертательная геометрия
Задачи начертательной геометрии
Туризм
Курс теоретической механики
Электротехника
Теория электрических цепей
Лабораторные работы по электротехнике
Электрические машины
Проводниковые материалы
Основы теории электромагнитного поля
Энергия электромагнитного поля
Физика
Примеры решения задач
Лабораторные работы по оптоэлектронике
Электроника полупроводников
Информатика
Концепция организации сетей
Беспроводные сети
Глобальные сети
Математика
Дифференцирование исчисление
Интегральное исчисление
Элементы комбинаторики
Непрерывность функции
Комплексные числа
Дискретная математика
Кривые второго порядка
Линейная алгебра
Элементы векторной алгебры
Введение в математический анализ
Производная функции
Теоремы о производных
Первообразная и неопределённый интеграл.
Определённый интеграл
Предел и непрерывность функции нескольких переменных.
Знакопеременные ряды
Правила вычисления неопределенных интегралов
Признаки сравнения несобственных интегралов
Задача
Разложение  в ряд Фурье функции
Вычисление криволинейного интеграла
 

Первообразная функция Функция > F ( x ) называется первообразной функцией  функции >f (>x ) на отрезке [>a , >b ], если в любой точке этого отрезка верно равенство:>F¢ (>x ) = >f ( x ).

Пример

Методы интегрирования Рассмотрим три основных метода интегрирования.

Интегрирование элементарных дробей

Примеры

Интегрирование рациональных функций 

Пример.    

Интегрирование некоторых тригонометрических функций

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда. Интеграл вида  Здесь >R – обозначение некоторой рациональной функции от переменных >sin>cosx . .

Интеграл произведения синусов и косинусов

Интегрирование некоторых иррациональных функций

Интегрирование биноминальных дифференциалов

Биноминальным дифференциалом называется выражение xm(a + bxn)pdx где m , n , и p – рациональные числа.

Определенный интеграл

Свойства

Вычисление определенного интеграла

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

  Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Замена переменных

Интегрирование по частям

Геометрические приложения определенного интеграла

Вычисление объемов тел.

Функции нескольких переменных

Производные и дифференциалы функций нескольких переменных

  Пример . Найти полный дифференциал функции .

Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности.

Приближенные вычисления с помощью полного дифференциала

Частные производные высших порядков

Экстремум функции нескольких переменных

Условный экстремум

Производная по направлению

  Пример. Вычислить производную функции z = x2 + y2>в точке А(1, 2) по направлению вектора . В (3, 0).

Градиент

Кратные интегралы Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

Условия существования двойного интеграла

Вычисление двойного интеграла  Пример. Вычислить интеграл , если область интегрирования >D ограничена линиями х = 0, х = у2, у = 2.

Тройной интеграл

 При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

 Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.

Цилиндрическая система координат

Геометрические и физические приложения кратных интегралов

Вычисление площади кривой поверхности

Вычисление площадей в полярных координатах

Начертательная геометрия, физика полупроводников